A Practical One-Shot Multispectral Imaging System Using a Single Image Sensor Single-sensor imaging using the Bayer color filter array (CFA) and demosaicking is well established for current compact and low-cost color digital cameras. An extension from the CFA to a multispectral filter array (MSFA) enables us to acquire a multispectral image in one shot without increased size or cost. However, multispectral demosaicking for the MSFA has been a challenging problem because of very sparse sampling of each spectral band in the MSFA. In this paper, we propose a high-performance multispectral demosaicking algorithm, and at the same time, a novel MSFA pattern that is suitable for our proposed algorithm.
Our key idea is the use of the guided filter to interpolate each spectral band. To generate an effective guide image, in our proposed MSFA pattern, we maintain the sampling density of the G-band as high as the Bayer CFA, and we array each spectral band so that an adaptive kernel can be estimated directly from raw MSFA data. Given these two advantages, we effectively generate the guide image from the most densely sampled G-band using the adaptive kernel. In the experiments, we demonstrate that our proposed algorithm with our proposed MSFA pattern outperforms existing algorithms and provides better color fidelity compared with a conventional color imaging system with the Bayer CFA. We also show some real applications using a multispectral camera prototype we built.