ENN: Extended Nearest Neighbor Method for Pattern Recognition

ENN: Extended Nearest Neighbor Method for Pattern RecognitionThis article introduces a new supervised classification method – the extended nearest neighbor (ENN) – that predicts input patterns according to the maximum gain of intra-class coherence. Unlike the classic k-nearest neighbor (KNN) method, in which only the nearest neighbors of a test sample are used to estimate a group membership, the ENN method makes a prediction in a “two-way communication” style: it considers not only who are the nearest neighbors of the test sample, but also who consider the test sample as their nearest neighbors. By exploiting the generalized class-wise statistics from all training data by iteratively assuming all the possible class memberships of a test sample, the ENN is able to learn from the global distribution, therefore improving pattern recognition performance and providing a powerful technique for a wide range of data analysis applications.